Dr. Marc A. Kastner

About me

Imageability estimation using visual and language features

Back to publications

Authors: Chihaya Matsuhira, Marc A. Kastner, Ichiro Ide, Yasutomo Kawanishi, Takatsugu Hirayama, Keisuke Doman, Daisuke Deguchi, Hiroshi Murase

Abstract:

Imageability is a concept from Psycholinguistics quantizing the human perception of words. However, existing datasets are created through subjective experiments and are thus very small. Therefore, methods to automatically estimate the imageability can be helpful. For an accurate automatic imageability estimation, we extend the idea of a psychological hypothesis called Dual-Coding Theory, that discusses the connection of our perception towards visual information and language information, and also focus on the relationship between the pronunciation of a word and its imageability. In this research, we propose a method to estimate imageability of words using both visual and language features extracted from corresponding data. For the estimation, we use visual features extracted from low- and high-level image features, and language features extracted from textual features and phonetic features of words. Evaluations show that our proposed method can estimate imageability more accurately than comparative methods, implying the contribution of each feature to the imageability.

Type: Short paper and poster at ACM International Conference on Multimedia Retrieval (ICMR) 2020

Publication date: June 2020

DOI: 10.1145/3372278.3390731


If you have questions or ideas about this research, feel free to leave a comment below or send me an email. I will reply quickly.
© 2013-2023 Marc A. Kastner. Powered by KirbyCMS. Some rights reserved. Privacy policy.