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Text-to-Image Diffusion Models

• Enable image generation from a text prompt
▪ E.g., Stable Diffusion[1]
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[1] Rombach et al., “High-resolution image synthesis with latent diffusion models”, CVPR 2022.
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Conceptual Blending in Diffusion Models

• Melzi et al.[3] assessed this effect qualitatively
▪ Interpolated embedding between two concepts 

induces images depicting blended concepts
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[3] Melzi et al., “Does Stable Diffusion dream of electric sheep?”, Image Schema Day 2023.
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Two Contributions of This Paper

1. Evaluate conceptual blending quantitatively
▪ Investigate when and how often two concepts blend

2. Exploit conceptual blending to generate intuitive images 
for non-existing words (nonwords)
▪ Associate each nonword with similar-sounding words
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Focus of This Oral Presentation

1. Evaluate conceptual blending quantitatively
▪ Investigate when and how often two concepts blend

2. Exploit conceptual blending to generate intuitive images 
for non-existing words (nonwords)
▪ Associate each nonword with similar-sounding words
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Evaluating Conceptual Blending Quantitatively

• Purpose: Detect conceptual blending in generated images

• Approach: Construct a concept detector
▪ Apply it to images generated from an interpolated embedding
➢Blending is the case where two concepts are detected simultaneously

6

Not blended

Blended!

“armour” “spider”

Interpolated 

Embedding

4 6

• Armour

• Armour

• Spider

Detection

Detection

Generate

Generate

Concept A Concept B

Interpolation ratio 𝑟 = 0.6



Constructing Concept Detector using CLIP

• Use CLIP[2] as an open-vocabulary concept detector

[2] Radford et al., “Learning transferable visual models from natural language supervision”, ICML 2021.
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Data: Preparing Seed Concepts

• Seed Concepts: English nouns with high imageability
▪ Imageability: Measure of how easily a word can be imagined

▪ Randomly taken from MRC Psycholinguistic Database[4]

• Interpolated embeddings between concepts A and B
▪ Formula: 𝐞 = 𝑟𝐞A + (1 − 𝑟)𝐞B
➢𝑟: Interpolation ratio

❖Randomly sample from 
{0.1, 0.2, …, 0.9}

▪ Created by randomly sampling 
two seed concepts A and B

[4] Coltheart, “The MRC psycholinguistic database”, Q. J. Exp. Psychol. Section A, vol.33, no.4, 1981.
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Data: Interpolated Embeddings and Images

• Create 1,000 interpolated embeddings
▪ By randomly sampling two seed concepts 1,000 times

• Generate 10 images for each interpolated embedding

• Detect blending with the concept detector

9

 armour 

 n  r o    d 

    dd n 

4  

Concept A Concept  
 spider 

Stable 

Diffusion Detector

2 of 10 images yielded conceptual blending



Metric: Blended Concept Depiction (BCD) 

• Probability of detecting both concepts A and B
in 2 or more images (out of 10 images)
▪ Probability: Frequency divided by the total number of image sets
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• More than 60% image generation results depict blended concepts

• BCD probability increases as the interpolation ratio approximates 0.5

0.0

0.2

0.4

0.6

0.8

1.0

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

D
ep

ic
ti

o
n

 P
ro

b
ab

ili
ty

Interpolation Ratio (r)

Maximum 62.1% Image Sets Yield Blending
11

0.621

Concept B 

was detected

Concept A

was detected

BCD



Two Contributions of This Paper

1. Evaluate conceptual blending quantitatively
▪ Midpoint maximizes the occurrence of conceptual blending

2. Exploit conceptual blending to generate intuitive images 
for non-existing words (nonwords)
▪ Associate each nonword with similar-sounding words
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